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The regio- and stereoselective synthesis of allylsilane
derivatives bearing a tetrasubstituted olefin was achieved using
2,2-diborylethylsilane as a key intermediate. The regioselective
deprotonation of a 2,2-diborylethylsilane with LTMP and the
subsequent nucleophilic addition to ketones gave corresponding
allylsilanes in good to excellent yield with excellent stereo-
selectivity.

Allylation intermediates are important synthons for the
synthesis of various functionalized molecules. There have been
many efforts to synthesize easily available allylation reagents,
such as allylboranes and allylsilanes.1 Despite their attractive
features as an allylic intermediate, there are not many examples
to synthesize an allylborane or an allylsilane bearing a
tetrasubstituted olefin.2 We previously reported the highly
stereoselective synthesis of tetrasubstituted alkenylboronates
via the deprotonation/nucleophilic addition of 1,1-diboryl-
alkanes3 to ketones.4 DFT calculations can support the stereo-
selective syn-elimination after nucleophilic addition of 1,1-
diborylalkanes to ketones. As a part of our studies, we are
interested in the stereoselective synthesis of an allylborane or an
allylsilane bearing a tetrasubstituted alkenylboronate moiety. We
describe here the stereoselective synthesis of allylsilanes bearing
a tetrasubstituted olefin via the nucleophilic addition of a 2,2-
diborylethylsilane to ketones, which could not be obtained via
other conventional approaches.

The deprotonation of 2,2-diborylethylsilane 1 using a base
and the subsequent nucleophilic addition to acetophenone (2a)
was carried out (Scheme 1). To our delight, the regioselective
deprotonation of 2,2-diborylethylsilane 1 using lithium 2,2,6,6-
tetramethylpiperazide (LTMP) and the following nucleophilic
addition to acetophenone (2a) occurred to give the correspond-
ing product (E)-3a in 81% yield.5 In contrast, the use of
lithium diisopropylamide (LDA) as a base did not give the
desired product 3a at all. The geometry of 3a was confirmed
by NOESY experiment. We carefully checked the crude
products, but the stereoisomer (Z)-3a could not be detected.
The tentative reaction using ethane-1,1,2-triboronate 1B and
benzophenone mediated by LDA gave the corresponding
product 3B in moderate yield; the use of LTMP gave a lower
yield (Scheme 2). Furthermore, the reaction of unsymmetrical
ketones mediated by LDA or LTMP gave products in low
yields as a mixture of stereoisomers along with unidentified
by-products; the examination of reaction conditions did not
improve the yields and stereoselectivities. Thus, we focus on
the reaction of 2,2-diborylethylsilane 1 and ketones using
LTMP.

The optimized conditions using 1 (2 equiv) and LTMP
(2 equiv) achieved good to excellent yields of allylsilanes using
aryl ketones (Table 1).6 The reaction using phenyl ketones 2a2f
realized excellent stereoselectivities (Entries 16). The electron-
withdrawing group or -donating group could be compatible to
give the corresponding products 3g and 3h in moderate to high
yields, respectively (Entries 7 and 8). Although the reaction
using a 1,1-diborylalkane and an aliphatic ketone gave a desired
product as shown in our previous report,3 the reaction using 2,2-
diborylethylsilane 1 and aliphatic ketones, such as 2i and 2j gave
unidentified by-products in each case (Entries 9 and 10). The
symmetric ketone, benzophenone (2k), gave the desired product
3k in excellent yield (Entry 11).

We tested the SuzukiMiyaura cross-coupling reaction of
the product 3c in the presence of Pd-catalyst (Scheme 3). The
coupling reaction with 4-iodoanisole in the presence of
[Pd(PPh3)4] (5mol%) and KOH (2.2 equiv) at 60 °C gave the
desired product 4 in 55% isolated yield. The trimethylsilyl
moiety was intact under the present reaction conditions. The
present demonstration represents the synthetic utility for further
transformations.

A DFT computation study was performed at the B3LYP/6-
31G* level of theory to identify the stereoselectivity (Figure 1).7

Typical models for lithium alkoxide intermediates, Int-1 and
Int-2, are described after the nucleophilic addition to acetophe-
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none (2a). The intramolecular coordination of the oxygen atom
in the pinacolboryl group to the lithium atom is feasible; the
optimized geometries gave OG-1 and OG-2, respectively.
Therefore, the rotation to path (A) should be predominant and
realized the syn-elimination through LiOCCB2 to give

(E)-3a. In contrast, DFT calculations of optimized geometries
derived from ethane-1,1,2-triboronate 1B showed that the
reaction leads to a mixture of stereoisomers (see the Supporting
Information8). Further examination of the optimization of four-
membered borate intermediates before syn-elimination were
performed (Figure 2).9 As a result, the relative energy of syn-E
was 1.8 kcalmol¹1 higher than that of syn-Z, and the relative
energy of (E)-3a was 0.6 kcalmol¹1 higher than that of (Z)-3a.
Thus, (Z)-3a should be obtained as a major isomer because of
the thermodynamic stability of borate intermediate syn-Z and
product (Z)-3a. In this context, the stereoselectivity could be
determined at the chelation intermediates OG-1 and OG-2 due
to its predominant stability.

In conclusion, we have demonstrated the stereoselective
synthesis of allylsilanes bearing a tetrasubstituted olefinic
moiety derived from 2,2-diborylethylsilane. The use of aromatic
ketones gave the desired products with excellent stereoselectiv-
ity. In contrast, the reaction of ethane-1,1,2-triboronate gave
poor results in yield and stereoselectivity. DFT calculations
support their stereoselectivities, although the influence of the
silyl moiety in 2,2-diborylethylsilane 1 and boron moiety
in ethane-1,1,2-triboronate 1B was not fully elucidated. We
demonstrated the SuzukiMiyaura cross-coupling reaction of the
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allylsilane and the silyl moiety was intact in the coupling
product. The further development of products as synthetic
intermediates are underway in our laboratory.
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